4180 Series Precision Infrared Calibrators

Should your thermometer be calibrated by one of these?

Business decisions costing thousands of dollars are based on the results of your measurements, so they had better be right! It can be very expensive to shut down a line for repairs and maintenance, but it might be catastrophic if the shutdown is unplanned. To stand by your measurements with confidence, you should definitely have your thermometers calibrated.

How to get consistent results:

Even those infrared thermometers that cannot be adjusted can benefit from a calibration that demonstrates the consistency and validity of your results. A trusted calibration means less worry, fewer questions and more time being productive. To get more reliable, traceable, and consistent results, buy a precision infrared calibrator from Fluke Calibration.

The 4180 Series of Precision Infrared Calibrators for infrared thermometers and thermal imagers is fast, accurate, and easy to use. It comes with an accredited calibration from one of the world's most trusted temperature calibration laboratories, sample
calibration procedures for Fluke thermometers built right in and everything you need to get started making highquality infrared thermometer calibrations. This is the perfect solution for any infrared thermometer or thermal imager within its temperature range.

The 4180 reaches temperatures from $-15^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ and the 4181 has a temperature range from $35^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$. Check out the uniformity of the large 152.4 mm (six in) targets shown in the Fluke Ti30 photo. The uniformity and stability are so good that variations can't be detected with a thermal imager. Uniformity is important in infrared temperature calibration work because an infrared
thermometer will "see" as much as the entire target when placed at the appropriate calibration distance and each pixel of a thermal imager registers a temperature that needs to be both accurate and consistent across the imager.

In addition, with accuracies as good as $\pm 0.35^{\circ} \mathrm{C}$, the 4180 Series can meet its specifications without additional emissivity-related corrections, leading to legitimate test uncertainty ratios (TUR) as good as 4:1. (See the sidebar below for information about common pitfalls in infrared calibrator accuracy and have a look at our Guide to Infrared Thermometer Calibration to get started quickly with your new calibrator.)

Common pitfalls in infrared thermometer calibration

- If the target size is too small, the thermometer will not read the right temperature. This problem, called size of source effect, is addressed by the large, 152.4 mm (six in) target of the 4180 series, which was designed to accommodate the field of view and calibration geometry requirements of certain common infrared thermometers used in the field, lab and process control.
- Some people are misled by the accuracy statements on IR calibrators because they are not familiar with the concept of emissivity. Look for calibrators with a "radiometric calibration" so that accuracy will be straightforward and uncomplicated by emissivity-related errors.
For more information on emissivity, size of source effect and radiometric calibration, see Fluke Calibration application note "Infrared Temperature Calibration 101" or choose a calibrator like the 4180 series that you know has already addressed all of these issues.

Comparing the 4180 and the 4181		
Function	4180	4181
Temperature range (@ $23^{\circ} \mathrm{C}$ ambient and 0.95 emissivity)	$-15{ }^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$ to $500{ }^{\circ} \mathrm{C}$
Display Accuracy(1)	$\begin{aligned} & \pm 0.40^{\circ} \mathrm{C} \text { at }-15^{\circ} \mathrm{C} \\ & \pm 0.40^{\circ} \mathrm{C} \text { at } 0^{\circ} \mathrm{C} \\ & \pm 0.50^{\circ} \mathrm{C} \text { at } 50^{\circ} \mathrm{C} \\ & \pm 0.50^{\circ} \mathrm{C} \text { at } 100^{\circ} \mathrm{C} \\ & \pm 0.55^{\circ} \mathrm{C} \text { at } 120^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \pm 0.35^{\circ} \mathrm{C} \text { at } 35^{\circ} \mathrm{C} \\ & \pm 0.50^{\circ} \mathrm{C} \text { at } 100^{\circ} \mathrm{C} \\ & \pm 0.70^{\circ} \mathrm{C} \text { at } 2000^{\circ} \mathrm{C} \\ & \pm 1.20^{\circ} \mathrm{C} \text { at } 350^{\circ} \mathrm{C} \\ & \pm 1.60^{\circ} \mathrm{C} \text { at } 500^{\circ} \mathrm{C} \end{aligned}$
Stability	$\begin{gathered} \pm 0.10^{\circ} \mathrm{C} \text { at }-15^{\circ} \mathrm{C} \\ \pm 0.05^{\circ} \mathrm{C} \text { at } 0^{\circ} \mathrm{C} \\ \pm 0.10^{\circ} \mathrm{C} \text { at } 120^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 0.05^{\circ} \mathrm{C} \text { at } 35^{\circ} \mathrm{C} \\ & \pm 0.20^{\circ} \mathrm{C} \text { at } 2000^{\circ} \mathrm{C} \\ & \pm 0.40^{\circ} \mathrm{C} \text { at } 500{ }^{\circ} \mathrm{C} \end{aligned}$
Uniformity (5.0 in dia of center of target)(2)	$\begin{gathered} \pm 0.15^{\circ} \mathrm{C} \text { at }-15^{\circ} \mathrm{C} \\ \pm 0.10^{\circ} \mathrm{C} \text { at } 0^{\circ} \mathrm{C} \\ \pm 0.25^{\circ} \mathrm{C} \text { at } 120^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \pm 0.10^{\circ} \mathrm{C} \text { at } 355^{\circ} \mathrm{C} \\ \pm 0.50^{\circ} \mathrm{C} \text { at } 200^{\circ} \mathrm{C} \\ \pm 1.00^{\circ} \mathrm{C} \text { at } 500^{\circ} \mathrm{C} \end{gathered}$
Uniformity (2.0 in dia of center of target)(2)	$\begin{gathered} \pm 0.10^{\circ} \mathrm{C} \text { at }-15^{\circ} \mathrm{C} \\ \pm 0.10^{\circ} \mathrm{C} \text { at } 0^{\circ} \mathrm{C} \\ \pm 0.20^{\circ} \mathrm{C} \text { at } 120^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \pm 0.10^{\circ} \mathrm{C} \text { at } 35^{\circ} \mathrm{C} \\ & \pm 0.25^{\circ} \mathrm{C} \text { at } 250^{\circ} \mathrm{C} \\ & \pm 0.50^{\circ} \mathrm{C} \text { at } 500^{\circ} \mathrm{C} \end{aligned}$
Heating time	$\begin{aligned} & 15 \mathrm{~min}:-15^{\circ} \mathrm{C} \text { to } 120^{\circ} \mathrm{C} \\ & 14 \mathrm{~min}: 23^{\circ} \mathrm{C} \text { to } 120^{\circ} \mathrm{C} \end{aligned}$	$45 \mathrm{~min}: 35^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$
Cooling time	$\begin{aligned} & 15 \mathrm{~min}: 120^{\circ} \mathrm{C} \text { to } 23^{\circ} \mathrm{C} \\ & 20 \mathrm{~min}: 23^{\circ} \mathrm{C} \text { to }-15^{\circ} \mathrm{C} \end{aligned}$	$100 \mathrm{~min}: 500^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ $40 \mathrm{~min}: 500^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Thermometer emissivity compensation	10 minutes	10 minutes
Nominal target emissivity(3)	0.95	0.95
Capacitance	0.9 to 1.0	
Target Diameter	152.4 mm (6 inches)	
Computer interface	RS-232	
Power	$\begin{gathered} 115 \mathrm{~V} \mathrm{ac}(\pm 10 \%), 6.3 \mathrm{~A}, \\ 50 / 60 \mathrm{~Hz}, 630 \mathrm{~W} \\ 230 \mathrm{~V} \mathrm{ac}(\pm 10 \%), 3.15 \mathrm{~A}, \\ 50 / 60 \mathrm{~Hz}, 630 \mathrm{~W} \end{gathered}$	$\begin{gathered} 115 \mathrm{~V} \mathrm{ac} \mathrm{(} \pm 10 \%), 10 \mathrm{~A}, \\ 50 / 60 \mathrm{~Hz}, 1000 \mathrm{~W} \\ 230 \mathrm{~V} \mathrm{ac}(10 \%), 5 \mathrm{~A} \\ 50 / 60 \mathrm{~Hz}, 1000 \mathrm{~W} \end{gathered}$
Fuse(s)	$\begin{gathered} 115 \mathrm{~V} \text { ac } 6.3 \mathrm{~A}, 250 \mathrm{~V} \text {, } \\ \text { slow blow } \\ 230 \mathrm{~V} \text { ac } 3.15 \mathrm{~A}, 250 \mathrm{~V}, \mathrm{~T} \end{gathered}$	115 V ac $10 \mathrm{~A}, 250 \mathrm{~V}$, fast blow 230 V ac $5 \mathrm{~A}, 250 \mathrm{~V}, \mathrm{~F}$
Size (HxWxD)	$\begin{aligned} & 356 \mathrm{~mm} \times 241 \mathrm{~mm} \times 216 \\ & \mathrm{~mm}(14 \mathrm{in} \times 9.5 \mathrm{in} \times 8.5 \mathrm{in}) \end{aligned}$	$\begin{gathered} 356 \mathrm{~mm} \times 241 \mathrm{~mm} \times 216 \\ \mathrm{~mm}(14 \mathrm{in} \times 9.5 \mathrm{in} \times 8.5 \mathrm{in}) \end{gathered}$
Weight	9.1 kg (20 lb)	$9.5 \mathrm{~kg}(21 \mathrm{lb})$
Safety	EN 61010-1:2001, CAN/CSA C22.2 No. 61010.1-04	

Ordering information

Model

4180 Precision Infrared Calibrator, $-15^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$

4181 Precision Infrared Calibrator, $35^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$

4180-CASE Carrying Case, 4180, 4181
4180-DCAS Carrying Case with wheels, 4180,4181

Included accessories

- Accredited radiometric calibration report
- Target cover
- User Guide
- Getting Started Guide
- 9930 Interface-it software with User Guide
(1) For 8 um to 14 um spectral band thermometers with emissivity set between 0.9 and 1.0
(2) The uniformity specification refers to how IR thermometers with different spot sizes both focused at the center of the target will measure the same temperature.
(3) The target has a nominal emissivity of 0.95 , however it is radiometrically calibrated to minimize emissivity related uncertainties.

Want to learn more?

Call your Fluke Calibration sales representative to request information or a price quote.

Call now

+1 (877) 355-3225

Fluke Calibration. Precision, performance, confidence.'m

Fluke Calibration

PO Box 9090, Everett, WA 98206 U.S.A.

Fluke Europe B.V

PO Box 1186, 5602 BD
Eindhoven, The Netherlands Web access: http://www.flukecal.eu

For more information call
In the U.S.A. (877) 355-3225 or
Fax (425) 446-5716
In Europe/M-East/Africa +31 (0) 402675200
or Fax +31 (0) 402675222
In Canada (800)-36-FLUKE or
Fax (905) 890-6866
From other countries +1 (425) 446-6110 or
Fax +1 (425) 446-5716
Web access: http://www.flukecal.com
©2021 Fluke Calibration.
Specifications subject to change without notice. Printed in U.S.A. 05/2021 3081955C 210427-en

